ORDERING
To assure selection of the correct rupture disc and holder for your application, please determine the following:

Rupture Disc: Quantity, Size, Description: Standard Rupture Disc

Material:
Rated Burst Pressure: psig or barg @ °F or °C
Manufacturing Tolerances: See Table III
Burst Tolerance: See Table IV
Manufacturing Condition: if replacing current Continental rupture disc installed
Sealing Configuration: if required
Options: • ASME testing required (Stamp)
• Liner, Coating
• Protective rings
• Vacuum / Backpressure Support (if required)
• Gaskets
• B.D.I. Alerts System

Holder:
Bolting Class (ASME, DIN, JIS):
Quantity, Size:
Material:
Inlet, Outlet
Configuration: (for Screw Type and Union Type Holders)
Inlet, Outlet
Accessories: (for Insert Type and Full Bolted Holders)
• Gauge Tap
• Nipple and Tee
• Excess Flow Valve
• Pressure Gauge
• Special Facing
• Teflon Coating
Other Requirements:

OTHER SPECIFICATIONS
Continental Disc Corporation has representatives located throughout the world. Contact the C.D.C. office nearest you for the authorized representative in your area.

Corporate Headquarters
Continental Disc Corporation
3160 W. Heartland Drive
Liberty, Missouri 64068-3385 USA
Phone: (816) 792-1500
Fax: (816) 792-2277 / 5447
E-mail: pressure@contdisc.com
Website: www.contdisc.com

The Netherlands
Continental Disc Corporation
Energieweg 20
2382 NJ Zoeterwoude-Rijndijk
The Netherlands
Phone: + (31) 71-5412221
Fax: + (31) 71-5414361
E-mail: cdcnl@contdisc.com

China
Continental Disc Corporation
Room 910, Tower B, COFCO Plaza
No. 8 JianGuoMenNei Avenue
Beijing (100005), P.R. China
Phone: + (86) 10-6522-4885
Fax: + (86) 10-6522-2885
Mobile: + (86) 137-0103-8871
E-mail: cdcchina@contdisc.com

India
Groth Continental Mfg. Pvt. Ltd.
Survey No. 423/P, Mahagujarat Industrial Estate, Moraiya, Sarkhej-Bavla Road,
Ahmedabad 382213, INDIA
E-mail: gcmpl@contdisc.com

Reproduction without written permission prohibited. © 2010 Continental Disc Corporation
What is a Standard Rupture Disc? The Standard Rupture Disc features:

- Available with Continental's B.D.I.® *(configuration for burst pressure, temperature, and materials)
- Available for use with a variety of applications including liquid, gas, and steam services
- Provided with an attached 3-Dimensional Flow Direction Tag, as a standard on all sizes 1-1/2" (38mm) and above, for easy visual verification of proper rupture disc orientation.
- Available with Continental's B.D.I.® (includes protective liners, protective covers, and Continental's warranty)
- Available in a wide range of materials and burst pressure ratings, including 316 Stainless Steel. (Refer to Table II for additional information about these options)
- For use in liquid or gas service and systems operating at up to 70% of the rupture disc’s rated pressure.
- Versatile operating characteristics, along with numerous customizable options like protective liners, protective covers, and Continental’s warranty.

Sizes and Materials

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>64</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD Disc</td>
<td>100</td>
</tr>
</tbody>
</table>

Table VI - 30° Insert Holder Weights and Dimensions

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>64</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD Disc</td>
<td>100</td>
</tr>
</tbody>
</table>
CONTINENTAL DISC HOLDERS

Continental’s Standard Rupture Discs are engineered for use in customized holder configurations as well as various standard designs.

30° Insert Type Holders

C.D.C.’s Insert Type Holders are designed to install within the bolt circle of ASME, DIN or JIS class flanges. Available materials include Carbon Steel, 304 or 316 Stainless Steel. Special materials are available upon request. Refer to Table VI for Insert Holder weights and dimensions.

Full Bolted Style Holders

The Full Bolted Style Holder is available in sizes ranging from 1/2” to 30” (13mm to 750mm) for ASME, DIN or JIS class flanges. Special materials are available upon request. For additional information, consult the factory.

Screw Type Holders*

The Screw Type Holder Assembly is designed for use in “mini-systems” with pressures as high as 20,000 psig (1379 barg). The Screw Type Holder is available for 1/2” (13mm) Standard Rupture Discs and is supplied with 1/4” or 1/2” (6mm or 13mm) MPT inlet threads and traditional MPT threaded, free or muffled style outlets. Available holder materials include Carbon Steel and 300 Series Stainless Steel. Special materials are available upon request. Refer to Bulletin 2-2308-2 for details.

Union Type Holders*

C.D.C.’s Union Type Holders are designed for piping connections using 1/2”, 1”, 1-1/2”, and 2” (13mm, 25mm, 40mm, and 50mm) size piping. Burst pressures up to 6,000 psig (414 barg) are available in the 1/2” and 1” sizes. The 1-1/2” and 2” sizes feature burst pressures up to 4,000 psig (276 barg). All Union Type Holders are available with threaded or weld inlets in combination with threaded, welded or muffled outlets. Available materials include Carbon Steel and 300 Series Stainless Steel. Special designs are available on request. Refer to C.D.C. Bulletin 2-3308-2 for details.

Code Compliance

When specified, the Standard Rupture Disc will be manufactured in accordance with ASME Code Sections III or VIII, ISO, DIN, EN, ESI, JIS or other codes, as required. For these applications, C.D.C. will manufacture, temperature test and mark the rupture disc to comply with specific code requirements.

Continental Disc Corporation has been accredited and is authorized by the ASME Code to utilize the Code Symbol Stamp for product built in accordance with the requirements of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

The Standard Rupture Disc flow performance was certified by The National Board of Boiler and Pressure Vessel Inspectors. These certified flow resistance (Kₚ) and minimum net flow area values are available from Continental Disc Corporation or The National Board of Boiler and Pressure Vessel Inspectors.

Continental Disc maintains an ASME accepted flow testing laboratory to conduct flow testing for rupture discs, relief valves and rupture disc/valve combinations. Refer to C.D.C. Bulletin 1-1106-0 for details.

Table V - Recommended Maximum Pressure for Stainless Steel and Carbon Steel ASME Class Flanges

<table>
<thead>
<tr>
<th>Service Temperature °F</th>
<th>1500 ASME</th>
<th>3000 ASME</th>
<th>6000 ASME</th>
<th>9000 ASME</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 to +100</td>
<td>275</td>
<td>725</td>
<td>1440</td>
<td>2160</td>
</tr>
<tr>
<td></td>
<td>2500 ASME</td>
<td>5000 ASME</td>
<td>7500 ASME</td>
<td>10000 ASME</td>
</tr>
</tbody>
</table>

Note: For values at other temperatures refer to ASME B16.5.

* Rupture disc tags are not attached to rupture discs for use in Screw Type or Union Type Holders. Tags can be attached to a rupture disc for use in Union Type Holders when specified. Consult the factory for more information.

Protective Liners, Protective Rings

For additional protection against media or aggressive materials, Continental offers both protective liners and coatings to help reduce the effect of corrosives. Protective rings may be used on rupture discs made of thin materials or where delicate protective liners are used. These rings provide rigidity for easier handling and also help protect the rupture disc from foreign materials in the seating area where a rupture disc holder may have become pitted or corroded from extended use.

Vacuum Support, Backpressure Support

Because some burst pressures require the use of thin materials, it may be necessary to support the rupture disc when a system vacuum or back pressure occurs. C.D.C. vacuum supports, manufactured for and directly attached to the rupture disc, are designed to withstand a full system vacuum, to 14.7 psig (1.01 barg). For backpressures in excess of full vacuum, Continental can supply a Backpressure Support specifically designed to withstand the system operation conditions.

When ordering a Standard Rupture Disc that will be subjected to vacuum or back pressure, clearly specify the operating conditions. C.D.C. will furnish the appropriate support design for the application.

STANDARD TYPE RUPTURE DISC

Gaskets

In cases where scratching or pitting has blanched the seating surface of the holder, a gasket may be required to enhance sealing. The gasket lines the seating area on the process side of the rupture disc to seal the assembly and help prevent leakage. As a standard, fluoropolymer gaskets are provided. Other materials, for specialized applications, are available upon request.

B.D.I. Alarm System

In situations where immediate notification of overpressure relief is critical, Continental’s B.D.I. (Burst Disc Indicator) Alarm System should be used to automatically notify system operators that a rupture disc has burst.

The heart of the B.D.I. Alarm System is the B.D.I. Alarm Strip. The B.D.I. Alarm Strip consists of a copper wire, adhered to a fluoropolymer membrane, that is installed in conjunction with the rupture disc. When the rupture disc bursts, the alarm strip is severed, disrupting the electrical current supplied from a connected monitoring device. This “open circuit” creates the signal to initiate alarms or equipment controlled by the monitoring device.

C.D.C.’s B.D.I. Alarm Strip is comput- er compatible, resistant to corrosives, and operational over a wide range of temperatures. The B.D.I. Alarm System is available for use with Standard Rupture Discs utilizing Insert or Full Bolted Holders in sizes 1” through 30” (25mm through 750mm).

Continental Disc also offers a complete line of B.D.I. Alarm Monitors providing several beneficial features including visual and/or auditory alarm signals and multi-channel modular, Factory Mutual approved, and Intrinsically Safe designs. Refer to C.D.C. Bulletin #5-7701-5 for details.
SPECIFICATIONS

Table II - Standard Type Rupture Disc Minimum / Maximum Pressures @ 72° F (22°C)

Manufacturing Range

Additional information. Please consult your C.D.C. representative or the factory for the standard range. Please consult your C.D.C. representative or the factory for the standard range. Please consult your C.D.C. representative or the factory for the standard range. Please consult your C.D.C. representative or the factory for the standard range.

<table>
<thead>
<tr>
<th>Size (in)</th>
<th>1/4</th>
<th>5/32</th>
<th>3/32</th>
<th>1/8</th>
<th>3/16</th>
<th>1/4</th>
<th>5/16</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>7/8</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>300</td>
<td>150</td>
<td>75</td>
<td>50</td>
<td>35</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.25</td>
<td>1.14</td>
<td>0.96</td>
<td>0.89</td>
<td>0.77</td>
<td>0.68</td>
<td>0.59</td>
<td>0.51</td>
<td>0.44</td>
<td>0.38</td>
<td>0.33</td>
<td>0.28</td>
<td>0.24</td>
<td>0.20</td>
<td>0.16</td>
</tr>
</tbody>
</table>

As per ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

Burst Tolerance

In accordance with ASME Code, a tolerance is applied to the rated or stamped burst pressure of a rupture disc. The rated (stamped) burst pressure is established after the rupture disc has been manufactured, by testing a minimum of two rupture discs from a lot and averaging the pressure at which the rupture discs burst. This average is the rated (stamped) burst pressure. The applicable tolerance is then applied to this pressure to determine the maximum expected burst pressure variation.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.

In accordance with ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±5% of its rated burst pressure. Burst pressures up to and including 30 psig (207 kPa) have a burst tolerance of ±5%. Burst pressures above 30 psig (207 kPa) have a burst tolerance of ±10%.
SPECIFICATIONS

Manufacturing Range

In accordance with ASME Code, a tolerance is applied to the rated or stamped burst pressure of a rupture disc. The rated (stamped) burst pressure is established after the rupture disc has been manufactured, by testing a minimum of two rupture discs from a lot and averaging the pressure at which the rupture discs burst. This average is the rated (stamped) burst pressure. The applicable tolerance is then applied to this pressure to determine the maximum expected burst pressure variation.

As per ASME Code, the Standard Rupture Disc is designed with a burst tolerance of ±15% of its stamped burst pressure (±3.10 barg) and ±5% for burst pressures above 40 psig (2.76 barg). Burst tolerances for Standard Rupture Discs rated below 15 psig (1,03 barg) are outlined in Table III. The burst tolerance applies only to the rated (marked) burst pressure on the rupture disc.

Table I - Standard Type Rupture Disc Minimum / Maximum Pressures @ 72°F (22°C)

<table>
<thead>
<tr>
<th>Size</th>
<th>Alum</th>
<th>Silver</th>
<th>Nickel</th>
<th>Monel</th>
<th>Standard Rupture Disc Minimum Burst Pressure</th>
<th>with Teflon Liner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 in</td>
<td>0.165</td>
<td>0.455</td>
<td>0.43</td>
<td>0.43</td>
<td>0.165 - 0.207 - 0.256 - 0.465</td>
<td>0.336</td>
</tr>
<tr>
<td>2</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 6.90</td>
<td>500</td>
</tr>
<tr>
<td>3 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 40.0</td>
<td>400</td>
</tr>
<tr>
<td>4 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 200.0</td>
<td>200</td>
</tr>
<tr>
<td>6 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 400.0</td>
<td>400</td>
</tr>
<tr>
<td>8 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 600.0</td>
<td>600</td>
</tr>
<tr>
<td>12 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 1200.0</td>
<td>1200</td>
</tr>
<tr>
<td>14 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 2400.0</td>
<td>2400</td>
</tr>
<tr>
<td>16 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 3600.0</td>
<td>3600</td>
</tr>
<tr>
<td>18 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 4800.0</td>
<td>4800</td>
</tr>
<tr>
<td>20 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 6000.0</td>
<td>6000</td>
</tr>
<tr>
<td>24 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 7200.0</td>
<td>7200</td>
</tr>
<tr>
<td>30 in</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 - 9000.0</td>
<td>9000</td>
</tr>
</tbody>
</table>

1. Minimum pressures in Table II are based upon the minimum of the manufacturing range @ 72°F (22°C). Standard Type Rupture Discs specified at a minimum rating will have the manufacturing range added above the minimum pressure (i.e. 3” (80mm) Standard made of nickel requested to burst at 45 psig (3.10 barg) will have a standard manufacturing range of 45 psig to 53 psig (3.10 barg to 3.65 barg)).

2. When ordering, please specify when a rupture disc will be used in a Union Type Holder. Consult the factory if you require tags to be attached to rupture discs used in Union Type Holders.

3. For information concerning conditions or rupture disc sizes not shown, please contact C.D.C. or your nearest C.D.C. representative.
CONTINENTAL DISC HOLDERS

The Screw Type Holder Assembly is designed for use in "mini-systems" with pressures as high as 20,000 psig (1379 bar). The Screw Type Holder is available for 1/2" (13mm) Standard Rupture Discs and is supplied with 3/4" or 1/2" (6mm or 13mm) MPT inlet threads and traditional MPT threaded, free or muffled style outlets. Available holder materials include Carbon Steel and 300 Series Stainless Steel. Refer to Bulletin 2-2006-2 for details.

Table V - Recommended Maximum Pressure for Stainless Steel and Carbon Steel ASME Class Flanges

<table>
<thead>
<tr>
<th>Service Temperature (°F)</th>
<th>Maximum Rating (psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15044ASME</td>
<td>30044ASME</td>
</tr>
<tr>
<td>60044ASME</td>
<td>150044ASME</td>
</tr>
<tr>
<td>300044ASME</td>
<td>300044ASME</td>
</tr>
<tr>
<td>-20 to +200</td>
<td>275</td>
</tr>
<tr>
<td>-300</td>
<td>720</td>
</tr>
<tr>
<td>-600</td>
<td>1440</td>
</tr>
<tr>
<td>-900</td>
<td>2160</td>
</tr>
<tr>
<td>-1200</td>
<td>3600</td>
</tr>
<tr>
<td>-1500</td>
<td>6000</td>
</tr>
</tbody>
</table>

Note: For values at other temperatures refer to ASME B16.5.

Protective Liners, Protective Rings

For additional protection against media or atmospheric elements, Continental offers both protective linings and coatings to help reduce the effect corrosives may have on the service life of the rupture disc. Typically, linings are made from Teflon®. Teflon or other coatings are also used to shield the rupture disc from corrosive processes.

Protective rings may be used on rupture discs made of thin materials or where delicate protective linings are used. These rings provide rigidity for easier handling and also help protect the rupture disc from foreign materials in the seating area where a rupture disc holder may have become pitted or corroded from extended use.

Vacuum Support, Backpressure Support

Because some burst pressures require the use of thin materials, it may be necessary to support the rupture disc when a system vacuum or backpressure occurs. C.D.C. vacuum supports, manufactured for and directly attached to the rupture disc, are designed to withstand a full system vacuum, to 14.7 psig (1.01 barg). For backpressures in excess of full vacuum, Continental can supply a Backpressure Support specifically designed to withstand the system operation conditions.

When ordering a Standard Rupture Disc that will be subjected to vacuum or backpressure, clearly specify the operating conditions. C.D.C. will furnish the appropriate support design for the application.

Gaskets

In cases where scratching or pitting has blemished the sealing surface of the holder, a gasket may be required to enhance sealing. The gasket lines the seating area on the process side of the rupture disc to seal the assembly and help prevent leakage. As a standard, Teflon gaskets are provided. Other materials, for specialized applications, are available upon request.

B.D.I. Alarm System

In situations where immediate notification of overpressure relief is critical, Continental's B.D.I. (Burst Disc Indicator) Alarm System should be used to automatically notify system operators that a rupture disc has burst.

The heart of the B.D.I. Alarm System is the B.D.I. Alarm Strip. The B.D.I. Alarm Strip consists of a copper wire, adhered to a Teflon membrane, that is installed in conjunction with the rupture disc. When the rupture disc bursts, the alarm strip is severed, disrupting the electrical current supplied from a connected monitoring device. This "open circuit" creates the signal to initiate alarms or equipment controlled by the monitoring device.

C.D.C.'s B.D.I. Alarm Strip is comput er compatible, resistant to corrosives, and operational over a wide range of temperatures. The B.D.I. Alarm System is available for use with Standard Rupture Discs utilizing Insert or Full Bolted Holders in sizes 1" through 30" (25mm through 750mm).

Continental also offers a full line of B.D.I. Alarm Monitors providing several beneficial features including visual and/or auditory alarm signals and multi-channel modular factory Mutual approved, and Intrinsically Safe designs. Refer to C.D.C. Bulletin #7701-5 for details.

* Teflon is a registered trademark of E.I. du Pont de Nemours and Company used under license.
What is a Standard Type Rupture Disc?

The Standard Rupture Disc is a solid metal, available in a wide range of sizes, materials and burst pressure ratings for use in numerous protection applications. It is fully engineered to meet the required burst pressure and operating-to-burst-pressure ratio for immediate notification of overpressure relief occurring through the rupture disc’s rated burst pressure. Contact the manufacturer for a 30° angular “Heavy-Lip” seat for higher pressures.

Recommended Operating Ratio

Under ideal operating conditions, the Standard Rupture Disc can be used in a variety of applications, including equipment operating up to 100% of the rupture disc’s rated burst pressure and systems having either liquid or gas process values. Contact the factory for additional information about the use of a Standard Rupture Disc for use in liquids.

Sizes and Materials

The Standard Rupture Disc is available in nominal sizes ranging from 1/4” to 30” (6mm to 750mm) in 316 Stainless Steel. (Refer to Table II for sizes and burst pressure ratings available in each material.)

Versatile operating characteristics, along with numerous customization options, make the Standard Rupture Disc a solid metal, available in a wide range of sizes, materials and burst pressure ratings for use in numerous protection applications. It is fully engineered to meet the required burst pressure and operating-to-burst-pressure ratio for immediate notification of overpressure relief occurring through the rupture disc’s rated burst pressure. Contact the manufacturer for a 30° angular “Heavy-Lip” seat for higher pressures.

Table VI - 30° Insert Holder Weights and Dimensions

<table>
<thead>
<tr>
<th>Flange Class</th>
<th>Outside Dia. (in / mm)</th>
<th>Weight (lbs / kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>4.50 / 114</td>
<td>5.50 / 139</td>
</tr>
<tr>
<td>3000</td>
<td>6.00 / 152</td>
<td>9.75 / 222</td>
</tr>
<tr>
<td>3500</td>
<td>7.50 / 191</td>
<td>15.00 / 344</td>
</tr>
<tr>
<td>4000</td>
<td>9.00 / 230</td>
<td>20.00 / 494</td>
</tr>
<tr>
<td>4500</td>
<td>10.50 / 270</td>
<td>25.00 / 585</td>
</tr>
<tr>
<td>5000</td>
<td>12.00 / 313</td>
<td>30.00 / 687</td>
</tr>
</tbody>
</table>

Table I - Recommended Gauge for Heavy-Lip Seating Design

<table>
<thead>
<tr>
<th>Flange Class</th>
<th>Outside Dia. (in / mm)</th>
<th>Weight (lbs / kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>4.50 / 114</td>
<td>5.50 / 139</td>
</tr>
<tr>
<td>3000</td>
<td>6.00 / 152</td>
<td>9.75 / 222</td>
</tr>
<tr>
<td>3500</td>
<td>7.50 / 191</td>
<td>15.00 / 344</td>
</tr>
<tr>
<td>4000</td>
<td>9.00 / 230</td>
<td>20.00 / 494</td>
</tr>
<tr>
<td>4500</td>
<td>10.50 / 270</td>
<td>25.00 / 585</td>
</tr>
<tr>
<td>5000</td>
<td>12.00 / 313</td>
<td>30.00 / 687</td>
</tr>
</tbody>
</table>
The Standard Rupture Disc is available in a variety of materials including: aluminum, steel, nickel, Monel®, Inconel®, *Sorinox® and 316 Stainless Steel. (Refer to Table II for a complete list of materials available in each material.)

Recommended Operating Ratio

The Standard Rupture Disc can be used in a variety of applications, including equipment operating up to 75% of the rupture disc rated burst pressure.

Seating Configurations

Continental’s Standard Rupture Disc is available in a 30° “right lip” design for normal operating pressures and a 20° angle “Heavy lip” seal for higher pressures. The rupture disc is designed with a seat that accommodates the use of a Standard Rupture Disc. Each application has its own unique operating characteristics. Many variables such as lubrication, cycling and operating to bursting pressure ratio must be considered in order to achieve maximum service life from the rupture disc. The rupture disc is designed to operate efficiently over a wide range of burst pressures and temperatures with a seat for normal operating pressures and a “Heavy Lip” seal for higher pressures.

<table>
<thead>
<tr>
<th>Sizes and Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>4” 100 psi 816-302-D 1” 300psi 1000-200 3” 600 psi 1500-200</td>
</tr>
<tr>
<td>6” 150 psi 1000-200</td>
</tr>
<tr>
<td>8” 200 psi 1500-200</td>
</tr>
<tr>
<td>10” 250 psi 2000-200</td>
</tr>
<tr>
<td>12” 300 psi 2500-200</td>
</tr>
</tbody>
</table>

Table I - Recommended Usage for Heavy-Lip Seating Design

<table>
<thead>
<tr>
<th>Size</th>
<th>Class</th>
<th>Outside Dia.</th>
<th>Weight</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>10</td>
<td>1-1/2”</td>
<td>5.25</td>
<td>13.50</td>
</tr>
<tr>
<td>6”</td>
<td>15</td>
<td>2”</td>
<td>7.00</td>
<td>17.70</td>
</tr>
<tr>
<td>8”</td>
<td>20</td>
<td>2-1/2”</td>
<td>8.00</td>
<td>19.30</td>
</tr>
<tr>
<td>10”</td>
<td>25</td>
<td>3”</td>
<td>9.00</td>
<td>20.90</td>
</tr>
<tr>
<td>12”</td>
<td>30</td>
<td>4”</td>
<td>10.00</td>
<td>22.50</td>
</tr>
</tbody>
</table>

Table VI - 30° Insert Holder Weights and Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Class</th>
<th>Outside Dia.</th>
<th>Weight</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>10</td>
<td>1-1/2”</td>
<td>5.25</td>
<td>13.50</td>
</tr>
<tr>
<td>6”</td>
<td>15</td>
<td>2”</td>
<td>7.00</td>
<td>17.70</td>
</tr>
<tr>
<td>8”</td>
<td>20</td>
<td>2-1/2”</td>
<td>8.00</td>
<td>19.30</td>
</tr>
<tr>
<td>10”</td>
<td>25</td>
<td>3”</td>
<td>9.00</td>
<td>20.90</td>
</tr>
<tr>
<td>12”</td>
<td>30</td>
<td>4”</td>
<td>10.00</td>
<td>22.50</td>
</tr>
</tbody>
</table>

Table VII - Expanded Size Class Weights and Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Class</th>
<th>Outside Dia.</th>
<th>Weight</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>10</td>
<td>1-1/2”</td>
<td>5.25</td>
<td>13.50</td>
</tr>
<tr>
<td>6”</td>
<td>15</td>
<td>2”</td>
<td>7.00</td>
<td>17.70</td>
</tr>
<tr>
<td>8”</td>
<td>20</td>
<td>2-1/2”</td>
<td>8.00</td>
<td>19.30</td>
</tr>
<tr>
<td>10”</td>
<td>25</td>
<td>3”</td>
<td>9.00</td>
<td>20.90</td>
</tr>
<tr>
<td>12”</td>
<td>30</td>
<td>4”</td>
<td>10.00</td>
<td>22.50</td>
</tr>
</tbody>
</table>
ORDERING

To assure selection of the correct rupture disc and holder for your application, please determine the following:

Rupture Disc
- **Quantity**
- **Size**
- **Material**
- **Rated Burst Pressure** (psig or barg @ °F or °C)
- **Manufacturing Range** (See Table III)
- **Burst Tolerance** (See Table III)
- **Manufacturing Numbers** (if replacing current Continental rupture disc installed)
- **Seating Configuration** (30° Light Lip, 30° Heavy Lip) (See Table II)
- **Options**: • ASME testing required (Stamp) • Liner, Coating • Protective rings • Vacuum / Backpressure Support (if required) • Gaskets • B.D.I. Alarm System

Holder
- **Bolting Class** (ASME, DIN, JIS)
- **Quantity**
- **Size**
- **Material** (SS, M316, etc.)
- **Configuration** (for Screw Type and Union Type Holders)
- **Inlet Outlet**
- **Accessories** (for Insert Type and Full Bolted Holders)
 - Gauge Tap
 - Nipple and Tee
 - Excess Flow Valve
 - Pressure Gauge
 - Special Facing
 - Fluoropolymer Coating
- **Other Requirements**

Quality Assurance / Documentation
- **Code**: ASME, ISO, DIN, JIS, or other
- **Special cleaning**
- **Special packaging**
- **Special tagging**
- **Temperature testing**
- **Material test reports**
- **Other**
ORDERING

To assure selection of the correct rupture disc and holder for your application, please determine the following:

Operating Specifications:
1. Maximum allowable working pressure (M.A.W.P.)
2. Operating pressure
3. Operating temperature
4. Actual vacuum / backpressure
5. Cycle conditions
6. Required flow rate
7. Media
8. Molecular weight / specific gravity

Quality Assurance / Documentation:
1. Code: ASME, ISO, DIN, JIS, or other
2. Special cleaning
3. Special packaging
4. Special tagging
5. Temperature testing
6. Material test reports
7. Other

Rupture Disc:
- Quantity
- Size
- Description: Standard Rupture Disc
- Material:
- Rated Burst Pressure: psig or barg @ °F or °C
- Manufacturing range: (See Table III)
- Burst Tolerance: (See Table III)
- Manufacturing number: (if replacing current Continental rupture disc installed)
- Seating Configuration: (30° Light Lip, 30° Heavy Lip) See Table II.
- Option: • ASME testing required (Stamp)
 • Liner, Coating
 • Protective rings
 • Vacuum / Backpressure Support (if required)
 • Gaskets
 • B.D.I. Alarm System

Holder:
- Bolting Class (ASME, DIN, JIS):
- Quantity
- Size
- Material: Inlet Outlet
- Configuration: (for Screw Type and Union Type Holders)
- Inlet Outlet
- Accessories: (for Insert Type and Full Bolted Holders)
 • Gauge Tap
 • Nipple and Tee
 • Excess Flow Valve
 • Pressure Gauge
 • Special Facing
 • Teflon Coating
- Other Requirements

OTHER SPECIFICATIONS

Continental Disc Corporation has representatives located throughout the world. Contact the C.D.C. office nearest you for the authorized representative in your area.

Continental Disc Corporation reserves the right to alter the information in this publication without notice. Printed in U.S.A. Reproduction without written permission prohibited. © 2010 Continental Disc Corporation